average wates d at $104^{\circ} \mathrm{F}$, 组 from all then t. ribution of then

nty oils at

${ }^{\circ} F$.

Desmiv, Bitan
1015
1.64
1.06:
1.01;
1.01;
$108:$
1.01:
104
1.85
1.018
1048
1019
1.019
1.08
1.080
1047
1.041
104?
1.04
1.045
1.037

/ in. ${ }^{2}$ for a tensw tigators, workiny represented by the is seen to be 1 ained graphicaly ethod of averaking average deviation ervation is samt or se deviation of the
d in the meacer t greater than thy ate. Both the pivis a methods of mem ite complicated nd accurate methox gravity botte: rmore, the meast ;ure in the syote e not involved ity determination the absolute nt of density unt expected to be 2π
F APPLIED PHYst

Nont at constant temperature. The fact that tote is good agreement between the data of mer, who used the piston displacement method, and thit of Dow, and Dow and Fenske, who used 3 n.iphon method, would seem to indicate, sment hat the absolute error involved in the mberants under consideration at constant Monture might be somewhat less than what Pobably the so expected.
moplation and extrapolation. Data were in the nuir at only three temperatures; name availut , and $167^{\circ} \mathrm{F}$. By interpolation and extr, 77°, unt of these data, a system was evolvapolaunns of which densities can be calcula by unvals of 10° between the limits of 20° and a'f. The method employed was to construct rutive density-temperature isobars at atmosसerci pressure, $10,000 \mathrm{lb} . / \mathrm{in} .^{2}$, and $20,000 \mathrm{lb} . / \mathrm{in} .{ }^{2}$ in frading off the relative densities at $77^{\circ}, 104^{\circ}$ and $167^{\circ} \mathrm{F}$ from the relative density-pressure mesalready described. While only three points ne ued to determine these isobars, the uncerwanty in locating the curves accurately was not , (reat as might be expected at first thought. Whtive density increases slowly with temperaat constant pressure, and for the experisetal range considered here does not depart ? moxpheric pressure could be located with exare accuracy with the aid of the National liresu of Standards tables ${ }^{6}$ that show the change a knsity of petroleum oils with temperature at mapheric pressure. At this point it is to be ond that the National Bureau of Standards wis indicate that oils in the range of specific mity of the present ones under consideration vir a thermal coefficient of expansion of 4×10^{-5} per ${ }^{\circ} \mathrm{F}$ at atmospheric pressure. The unges of the corresponding values reported by is ${ }^{?}$? and by Dow and Fenske ${ }^{3}$ were 37×10^{-5} ${ }^{1} 4 \times 10^{-5}$, respectively. This variation of the - Fient can be taken as the possible error in e temperature measurements, since the appavased at the National Bureau of Standards : s doubtless better suited to measuring the thexpheric isobar than the sylphon apparatus

[^0] 4
used by these other investigators. Thus the atmospheric isobar was first corrected to bring it into line with the National Bureau of Standards values, and the other isobars were then corrected correspondingly. By using this system of correction, the actual shape of the density-pressure curves was left unchanged, and the intercept on the density axis was corrected only to bring the atmospheric densities into line with the National Bureau of Standards tables.

Density Equation

In order to express the graphical results in a simple form that can be used readily for the calculation of density at various pressures and temperatures when the density at atmospheric pressure is known at a particular temperature, the following empirical equation was developed,

$$
\begin{equation*}
\rho=\rho_{0}\left(1+a p-b p^{2}\right)_{t} . \tag{1}
\end{equation*}
$$

In this equation ρ is the density in $\mathrm{g} / \mathrm{cm}^{3}$ at any stated temperature t and pressure p, and ρ_{0} is the density at the same temperature at atmospheric pressure. Temperatures are expressed in degrees Fahrenheit and pressures in pounds per square inch gage. The symbols a and b represent constants at any given temperature. Values for a and b are given in Table II.

Table II. Density constants a and b as functions of temperature.

$\underset{\substack{\text { Temp. }}}{ }$	a	b		a	b
20	3.96×10^{-6}	7.3×10^{-11}	130	4.50×10^{-6}	5.3×10^{-11}
30	4.02	7.0	140	4.53	5.1
40	4.08	6.8	150	4.56	5.0
50	4.14	6.6	160	4.59	4.9
60	4.19	6.4	170	4.61	4.8
70	4.24	6.2	180	4.63	4.7
80	4.29	6.0	190	4.64	4.6
90	4.34	5.8	200	4.66	4.5
100	4.38	5.7	210	4.67	4.4
110	4.42	5.5	220	4.68	4.4
120	4.46	5.4			

The method used to compute the values of a and b is readily explained. For each of the temperatures listed values of ρ / ρ_{0} were taken from the isobars constructed as described in a previous section, and a and b were evaluated using simultaneous equations of the type of Eq. (1). The values so calculated were then plotted as shown in Fig. 1 and Table II was constructed

[^0]: Utional Bureau of Standards Circular C410, United in Covernment Printing Office, Washington, D. C.

